45,866 research outputs found

    Ant routing algorithm for the Lightning Network

    Get PDF
    We propose a decentralized routing algorithm that can be implemented in Bitcoin Lightning Network. All nodes in the network contribute equally to path searching. The algorithm is inspired from ant path searching algorithms.Comment: 10 pages, 1 figur

    Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content, and genome organization.

    Get PDF
    Acquisition of mitochondria by the ancestor of all living eukaryotes represented a crucial milestone in the evolution of the eukaryotic cell. Nevertheless, a number of anaerobic unicellular eukaryotes have secondarily discarded certain mitochondrial features, leading to modified organelles such as hydrogenosomes and mitosomes via degenerative evolution. These mitochondrion-derived organelles have lost many of the typical characteristics of aerobic mitochondria, including certain metabolic pathways, morphological traits, and, in most cases, the organellar genome. So far, the evolutionary pathway leading from aerobic mitochondria to anaerobic degenerate organelles has remained unclear due to the lack of examples representing intermediate stages. The human parasitic stramenopile Blastocystis is a rare example of an anaerobic eukaryote with organelles that have retained some mitochondrial characteristics, including a genome, whereas they lack others, such as cytochromes. Here we report the sequence and comparative analysis of the organellar genome from two different Blastocystis isolates as well as a comparison to other genomes from stramenopile mitochondria. Analysis of the characteristics displayed by the unique Blastocystis organelle genome gives us an insight into the initial evolutionary steps that may have led from mitochondria to hydrogenosomes and mitosomes

    Polar optical phonons in core-shell semiconductor nanowires

    Get PDF
    We obtain the the long-wavelength polar optical vibrational modes of semiconductor core-shell nanowires by means of a phenomenological continuum model. A basis for the space of solutions is derived, and by applying the appropriate boundary conditions, the transcendental equations for the coupled and uncoupled modes are attained. Our results are applied to the study of the GaAs-GaP core-shell nanowire, for which we calculate numerically the polar optical modes, analyzing the role of strain in the vibrational properties of this nanosystem

    Generating functional analysis of complex formation and dissociation in large protein interaction networks

    Full text link
    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.Comment: 14 pages, to be published in Proc of IW-SMI-2009 in Kyoto (Journal of Phys Conference Series
    • 

    corecore